[python] 바이너리 트리를 구현하는 방법은 무엇입니까?
파이썬에서 이진 트리를 구현하는 데 사용할 수있는 최고의 데이터 구조는 무엇입니까?
답변
다음은 이진 검색 트리의 간단한 재귀 구현입니다.
#!/usr/bin/python
class Node:
def __init__(self, val):
self.l = None
self.r = None
self.v = val
class Tree:
def __init__(self):
self.root = None
def getRoot(self):
return self.root
def add(self, val):
if self.root is None:
self.root = Node(val)
else:
self._add(val, self.root)
def _add(self, val, node):
if val < node.v:
if node.l is not None:
self._add(val, node.l)
else:
node.l = Node(val)
else:
if node.r is not None:
self._add(val, node.r)
else:
node.r = Node(val)
def find(self, val):
if self.root is not None:
return self._find(val, self.root)
else:
return None
def _find(self, val, node):
if val == node.v:
return node
elif (val < node.v and node.l is not None):
self._find(val, node.l)
elif (val > node.v and node.r is not None):
self._find(val, node.r)
def deleteTree(self):
# garbage collector will do this for us.
self.root = None
def printTree(self):
if self.root is not None:
self._printTree(self.root)
def _printTree(self, node):
if node is not None:
self._printTree(node.l)
print(str(node.v) + ' ')
self._printTree(node.r)
# 3
# 0 4
# 2 8
tree = Tree()
tree.add(3)
tree.add(4)
tree.add(0)
tree.add(8)
tree.add(2)
tree.printTree()
print(tree.find(3).v)
print(tree.find(10))
tree.deleteTree()
tree.printTree()
답변
# simple binary tree
# in this implementation, a node is inserted between an existing node and the root
class BinaryTree():
def __init__(self,rootid):
self.left = None
self.right = None
self.rootid = rootid
def getLeftChild(self):
return self.left
def getRightChild(self):
return self.right
def setNodeValue(self,value):
self.rootid = value
def getNodeValue(self):
return self.rootid
def insertRight(self,newNode):
if self.right == None:
self.right = BinaryTree(newNode)
else:
tree = BinaryTree(newNode)
tree.right = self.right
self.right = tree
def insertLeft(self,newNode):
if self.left == None:
self.left = BinaryTree(newNode)
else:
tree = BinaryTree(newNode)
tree.left = self.left
self.left = tree
def printTree(tree):
if tree != None:
printTree(tree.getLeftChild())
print(tree.getNodeValue())
printTree(tree.getRightChild())
# test tree
def testTree():
myTree = BinaryTree("Maud")
myTree.insertLeft("Bob")
myTree.insertRight("Tony")
myTree.insertRight("Steven")
printTree(myTree)
여기에 대해 자세히 읽어보십시오 :- 이것은 바이너리 트리의 매우 간단한 구현 입니다.
이것은 중간에 질문이있는 멋진 튜토리얼입니다.
답변
[인터뷰에 필요한 것] Node 클래스는 바이너리 트리를 표현하기에 충분한 데이터 구조입니다.
(다른 답변은 대부분 정확하지만 바이너리 트리에는 필요하지 않습니다. 객체 클래스를 확장 할 필요가없고 BST 일 필요가 없으며 deque를 가져올 필요가 없습니다).
class Node:
def __init__(self, value = None):
self.left = None
self.right = None
self.value = value
다음은 트리의 예입니다.
n1 = Node(1)
n2 = Node(2)
n3 = Node(3)
n1.left = n2
n1.right = n3
이 예에서 n1은 n2, n3을 자식으로 갖는 트리의 루트입니다.
답변
Python에서 BST의 간단한 구현
class TreeNode:
def __init__(self, value):
self.left = None
self.right = None
self.data = value
class Tree:
def __init__(self):
self.root = None
def addNode(self, node, value):
if(node==None):
self.root = TreeNode(value)
else:
if(value<node.data):
if(node.left==None):
node.left = TreeNode(value)
else:
self.addNode(node.left, value)
else:
if(node.right==None):
node.right = TreeNode(value)
else:
self.addNode(node.right, value)
def printInorder(self, node):
if(node!=None):
self.printInorder(node.left)
print(node.data)
self.printInorder(node.right)
def main():
testTree = Tree()
testTree.addNode(testTree.root, 200)
testTree.addNode(testTree.root, 300)
testTree.addNode(testTree.root, 100)
testTree.addNode(testTree.root, 30)
testTree.printInorder(testTree.root)
답변
목록을 사용하여 이진 트리를 구현하는 매우 빠르고 더러운 방법입니다. 가장 효율적이지 않으며 nil 값을 너무 잘 처리하지도 않습니다. 그러나 그것은 (적어도 나에게는) 매우 투명합니다.
def _add(node, v):
new = [v, [], []]
if node:
left, right = node[1:]
if not left:
left.extend(new)
elif not right:
right.extend(new)
else:
_add(left, v)
else:
node.extend(new)
def binary_tree(s):
root = []
for e in s:
_add(root, e)
return root
def traverse(n, order):
if n:
v = n[0]
if order == 'pre':
yield v
for left in traverse(n[1], order):
yield left
if order == 'in':
yield v
for right in traverse(n[2], order):
yield right
if order == 'post':
yield v
이터 러블에서 트리 생성 :
>>> tree = binary_tree('A B C D E'.split())
>>> print tree
['A', ['B', ['D', [], []], ['E', [], []]], ['C', [], []]]
트리 횡단 :
>>> list(traverse(tree, 'pre')), list(traverse(tree, 'in')), list(traverse(tree, 'post'))
(['A', 'B', 'D', 'E', 'C'],
['D', 'B', 'E', 'A', 'C'],
['D', 'E', 'B', 'C', 'A'])
답변
나는 도울 수 없지만 여기에서 대부분의 답변이 이진 검색 트리를 구현하고 있음을 알 수 있습니다. 이진 검색 트리! = 이진 트리.
-
이진 검색 트리에는 매우 특정한 속성이 있습니다. 모든 노드 X의 경우 X의 키는 왼쪽 자식의 하위 키보다 크고 오른쪽 자식의 하위 키보다 작습니다.
-
바이너리 트리는 그러한 제한을 부과하지 않습니다. 이진 트리는 ‘키’요소와 ‘왼쪽’과 ‘오른쪽’이라는 두 개의 하위 요소가있는 데이터 구조입니다.
-
트리는 각 노드가 임의의 수의 자식을 가질 수있는 바이너리 트리의 훨씬 더 일반적인 경우입니다. 일반적으로 각 노드에는 목록 / 배열 유형의 ‘하위’요소가 있습니다.
이제 OP의 질문에 답하기 위해 Python에 바이너리 트리의 전체 구현을 포함하고 있습니다. 각 BinaryTreeNode를 저장하는 기본 데이터 구조는 최적의 O (1) 조회를 제공하므로 사전입니다. 또한 깊이 우선 및 폭 우선 순회를 구현했습니다. 이들은 트리에서 수행되는 매우 일반적인 작업입니다.
from collections import deque
class BinaryTreeNode:
def __init__(self, key, left=None, right=None):
self.key = key
self.left = left
self.right = right
def __repr__(self):
return "%s l: (%s) r: (%s)" % (self.key, self.left, self.right)
def __eq__(self, other):
if self.key == other.key and \
self.right == other.right and \
self.left == other.left:
return True
else:
return False
class BinaryTree:
def __init__(self, root_key=None):
# maps from BinaryTreeNode key to BinaryTreeNode instance.
# Thus, BinaryTreeNode keys must be unique.
self.nodes = {}
if root_key is not None:
# create a root BinaryTreeNode
self.root = BinaryTreeNode(root_key)
self.nodes[root_key] = self.root
def add(self, key, left_key=None, right_key=None):
if key not in self.nodes:
# BinaryTreeNode with given key does not exist, create it
self.nodes[key] = BinaryTreeNode(key)
# invariant: self.nodes[key] exists
# handle left child
if left_key is None:
self.nodes[key].left = None
else:
if left_key not in self.nodes:
self.nodes[left_key] = BinaryTreeNode(left_key)
# invariant: self.nodes[left_key] exists
self.nodes[key].left = self.nodes[left_key]
# handle right child
if right_key == None:
self.nodes[key].right = None
else:
if right_key not in self.nodes:
self.nodes[right_key] = BinaryTreeNode(right_key)
# invariant: self.nodes[right_key] exists
self.nodes[key].right = self.nodes[right_key]
def remove(self, key):
if key not in self.nodes:
raise ValueError('%s not in tree' % key)
# remove key from the list of nodes
del self.nodes[key]
# if node removed is left/right child, update parent node
for k in self.nodes:
if self.nodes[k].left and self.nodes[k].left.key == key:
self.nodes[k].left = None
if self.nodes[k].right and self.nodes[k].right.key == key:
self.nodes[k].right = None
return True
def _height(self, node):
if node is None:
return 0
else:
return 1 + max(self._height(node.left), self._height(node.right))
def height(self):
return self._height(self.root)
def size(self):
return len(self.nodes)
def __repr__(self):
return str(self.traverse_inorder(self.root))
def bfs(self, node):
if not node or node not in self.nodes:
return
reachable = []
q = deque()
# add starting node to queue
q.append(node)
while len(q):
visit = q.popleft()
# add currently visited BinaryTreeNode to list
reachable.append(visit)
# add left/right children as needed
if visit.left:
q.append(visit.left)
if visit.right:
q.append(visit.right)
return reachable
# visit left child, root, then right child
def traverse_inorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
self.traverse_inorder(node.left, reachable)
reachable.append(node.key)
self.traverse_inorder(node.right, reachable)
return reachable
# visit left and right children, then root
# root of tree is always last to be visited
def traverse_postorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
self.traverse_postorder(node.left, reachable)
self.traverse_postorder(node.right, reachable)
reachable.append(node.key)
return reachable
# visit root, left, then right children
# root is always visited first
def traverse_preorder(self, node, reachable=None):
if not node or node.key not in self.nodes:
return
if reachable is None:
reachable = []
reachable.append(node.key)
self.traverse_preorder(node.left, reachable)
self.traverse_preorder(node.right, reachable)
return reachable
답변
두 개의 수업이 필요하지 않습니다
class Tree:
val = None
left = None
right = None
def __init__(self, val):
self.val = val
def insert(self, val):
if self.val is not None:
if val < self.val:
if self.left is not None:
self.left.insert(val)
else:
self.left = Tree(val)
elif val > self.val:
if self.right is not None:
self.right.insert(val)
else:
self.right = Tree(val)
else:
return
else:
self.val = val
print("new node added")
def showTree(self):
if self.left is not None:
self.left.showTree()
print(self.val, end = ' ')
if self.right is not None:
self.right.showTree()