[algorithm] 문제가 NP 완전하다는 것을 증명하는 방법은 무엇입니까?
일정에 문제가 있습니다. 문제가 NP 완전하다는 것을 증명해야합니다. NP 완료를 증명하는 방법은 무엇입니까?
답변
문제가 NP 완료임을 표시하려면 다음을 수행해야합니다.
NP로 표시
즉, 일부 정보가 주어지면 도메인에 있는지 여부에 관계없이 가능한 모든 입력을 확인 C
하는 다항식 시간 알고리즘 V
을 만들 수 있습니다 .X
X
예
정점 커버 의 문제 (즉, 일부 그래프의 G
경우 모든 가장자리 가 커버 세트에 적어도 하나의 정점이있는 크기의 정점 커버 세트가k
G
있습니까?)가 NP에 있음을 증명 하십시오 .
-
입력
X
은 그래프G
와 숫자입니다k
(문제 정의에서 가져온 것입니다) -
우리의 정보를 가지고
C
“그래프의 정점의 가능한 모든 부분 집합으로G
크기k
“ -
그런 다음 우리는 알고리즘을 쓸 수
V
주어진G
,k
그리고C
정점의 집합에 대한 정점 커버 있는지 여부를 반환합니다,G
에, 또는하지 다항식 시간 .
그런 다음 모든 그래프 G
에 대해 정점 커버 인 ” G
크기 의 정점의 가능한 하위 집합 k
“이 G
있으면에 NP
있습니다.
주 우리가 할 것을 하지 찾을 필요가 C
다항식 시간에. 가능하다면 문제는`P.
참고 알고리즘이 것을 V
위해 일해야 모든 G
일부, C
. 모든 입력에 대해 입력이 문제 도메인에 있는지 여부를 확인하는 데 도움 이되는 정보 가 있어야 합니다 . 즉, 정보가 존재하지 않는 곳에 입력이 없어야합니다.
NP Hard 증명
여기에는 다음과 같은 형식의 부울 식 집합 인 SAT 와 같은 알려진 NP- 완전 문제 가 포함됩니다.
(A 또는 B 또는 C) 및 (D 또는 E 또는 F) 및 …
식이 만족 스러우면 이러한 부울에 대한 일부 설정이 있으므로식이 true가 됩니다.
그런 다음 다항식 시간에서 NP- 완전 문제를 문제로 줄 입니다.
즉, (또는 사용중인 NP- 완전 문제에 X
대한) 입력이 주어지면 SAT
문제에 Y
대한 입력 을 생성 합니다. 문제 X
가있는 경우에만 SAT Y
에 있습니다. 함수 f : X -> Y
는 다항식 시간에 실행되어야합니다 .
위의 예에서 입력 Y
은 그래프 G
와 꼭지점 덮개의 크기입니다 k
.
완전한 증거 를 얻으 려면 다음 두 가지를 모두 증명해야합니다.
-
그것은
X
이다SAT
> =Y
문제에 -
그리고
Y
문제의 =>X
에서SAT
.
marcog의 답변에는 문제로 줄일 수있는 몇 가지 다른 NP- 완전 문제와 연결되어 있습니다.
각주 : 2 단계 ( NP-hard임을 증명 )에서 다른 NP-hard (반드시 NP-complete는 아님) 문제를 현재 문제로 줄이면 NP- 완전 문제는 NP-hard 문제 (즉, NP에서도).
답변
NP-Complete 문제를 현재 가지고있는 문제로 줄여야합니다. 다항식 시간 내에 감소를 수행 할 수 있다면 문제가 이미 NP에있는 경우 문제가 NP 완전하다는 것을 증명 한 것입니다.
NP- 완전 문제보다 쉽지는 않습니다. 다항식 시간에 문제를 NP-Hard로 만들 수 있기 때문입니다.
말을 참조하십시오 http://www.ics.uci.edu/~eppstein/161/960312.html을 이상.
답변
문제 L이 NP 완전하다는 것을 증명하려면 다음 단계를 수행해야합니다.
- 문제 L이 NP에 속한다는 것을 증명하십시오 (즉, 솔루션이 주어지면 다항식 시간에 확인할 수 있음).
- 알려진 NP- 완전 문제 선택 L ‘
- L ‘을 L로 변환하는 알고리즘 f를 설명하십시오.
- 알고리즘이 정확함을 증명하십시오 (공식 : x ∈ L ‘if 및 if and only if f (x) ∈ L)
- algo f가 다항식 시간에 실행된다는 것을 증명
답변
첫째, 당신은 그것이 NP에 있다는 것을 보여줍니다.
그런 다음 이미 알고있는 또 다른 문제가 NP 완료라는 것을 발견하고 문제에 대한 NP 어려움 문제를 다 항적으로 줄이는 방법을 보여줍니다.
답변
- NP Complete 문제의 하위 집합에 익숙해지기
- NP 경도 증명 : NP 완전 문제의 임의의 인스턴스를 문제의 인스턴스로 줄입니다. 이것은 파이의 가장 큰 조각이며 NP Complete 문제에 대한 친숙 함이 지불하는 곳입니다. 선택한 NP Complete 문제에 따라 감소가 다소 어려울 것입니다.
- 문제가 NP에 있음을 증명하십시오 : 인스턴스가 솔루션인지 다항식 시간에 확인할 수있는 알고리즘을 설계하십시오.