아래에 언급 된 데이터 프레임이 있습니다.
structure(
list(ID = c("P-1", " P-1", "P-1", "P-2", "P-3", "P-4", "P-5", "P-6", "P-7",
"P-8"),
Date = c("2020-03-16 12:11:33", "2020-03-16 13:16:04",
"2020-03-16 06:13:55", "2020-03-16 10:03:43",
"2020-03-16 12:37:09", "2020-03-16 06:40:24",
"2020-03-16 09:46:45", "2020-03-16 12:07:44",
"2020-03-16 14:09:51", "2020-03-16 09:19:23"),
Status = c("SA", "SA", "SA", "RE", "RE", "RE", "RE", "XA", "XA", "XA"),
Flag = c("L", "L", "L", NA, "K", "J", NA, NA, "H", "G"),
Value = c(5929.81, 5929.81, 5929.81, NA, 6969.33, 740.08, NA, NA, 1524.8,
NA),
Flag2 = c("CL", "CL", "CL", NA, "RY", "", NA, NA, "", NA),
Flag3 = c(NA, NA, NA, NA, "RI", "PO", NA, "SS", "DDP", NA)),
.Names=c("ID", "Date", "Status", "Flag", "Value", "Flag2", "Flag3"),
row.names=c(NA, 10L), class="data.frame")
아래 언급 된 코드를 사용하고 있습니다.
df %>% mutate(L = ifelse(Flag == "L",1,0),
K = ifelse(Flag == "K",1,0),
# etc for Flag) %>%
mutate(sub_status = NA) %>%
mutate(sub_status = ifelse(!is.na(Flag2) & Flag3 == 0, "a", sub_status),
sub_status = ifelse(is.na(Flag2) & Flag3 != 0, "b", sub_status),
# etc for sub-status) %>%
mutate(value_class = ifelse(0 <= Value & Value <= 15000, "0-15000",
"15000-50000")) %>%
group_by(Date, status, sub_status, value_class) %>%
summarise(L = sum(L),
K = sum(K),
# etc
count = n())
다음과 같은 출력을 제공합니다.
Date Status sub_status value_class G H I J K L NA Count
2020-03-20 SA a 0-15000 0 0 0 0 1 1 0 2
2020-03-20 SA b 0-15000 0 0 0 0 1 0 0 1
................
................
열을 사용하여 다음과 같은 출력을 얻고 싶습니다 DF
. 여기서 Status
열에는 고유 한 3 개의 값 Flag2
이 있고 값 또는 [null] 또는 NA가 있으며 마지막으로 Flag3
열에는 [null] 또는 NA의 7 개의 고유 값이 있습니다. 하나의 구별 ID
을 위해 우리는 여러 개의 항목을 가지고 있습니다 Flag3
.
Value
0-15000, 15000-50000과 같은 3 그룹을 생성하여 다음 데이터 프레임을 만들어야합니다 .
- 고유 ID의
Flag2
경우 0 또는 [null] / NA 이외의Flag3
값이 있지만 값이 0 또는 [null] / NA이면 값은입니다a
. - 고유 ID의
Flag3
경우 0 또는 [null] / NA 이외의Flag2
값이 있지만 값이 0 또는 [null] / NA 인 경우b
- 고유 한 ID 모두
Flag2
&에Flag3
0 또는 [Null] / NA 이외의 값이 있으면c
- 고유 한 ID에 대해
Flag2
&Flag3
값이 0 또는 [Null] / NA 인 경우d
위에서 언급 한 datafrmae를 다음 구조의 with percent
및 Total
column 에 정렬하고 싶습니다 .
나는 2/5
상태가 총계 sub_status
로 나뉘어져있는 반면 에 각자의 상태로 나뉘어 질 것임을 보여주는 비율을 언급 했다 Status
.
16/03/2020 0 - 15000 15000 - 50000
Status count percent L K J H G [Null] count percent L K J H G [Null] Total
SA 1 1/8 (12.50%) 1 0 0 0 0 0 0 - 0 0 0 0 0 0 1
a 1 1/1(100.00%) 1 0 0 0 0 0 0 - 0 0 0 0 0 0 1
b 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
c 0 - 1 0 0 0 0 0 0 - 0 0 0 0 0 0 0
d 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
RE 4 50.00% 0 1 1 0 0 2 0 - 0 0 0 0 0 0 4
a 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
b 1 25.00% 0 0 1 0 0 1 0 - 0 0 0 0 0 0 1
c 1 25.00% 0 1 0 0 0 1 0 - 0 0 0 0 0 0 1
d 2 50.00% 0 0 0 0 0 2 0 - 0 0 0 0 0 0 2
XA 3 37.50% 0 0 0 1 1 1 0 - 0 0 0 0 0 0 3
a 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
b 2 66.67% 0 0 0 1 0 1 0 - 0 0 0 0 0 0 2
c 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
d 1 33.33% 0 0 0 0 1 0 0 - 0 0 0 0 0 0 1
Total 8 100.00% 1 1 0 0 1 3 0 - 0 0 0 0 0 0 8
데이터 프레임에 최신 날짜가 없으면 startdate
출력 데이터 프레임의 모든 값을 0으로 유지 하는 경우 16/03/2020 인 최신 날짜를 기준으로 필요한 출력을 언급했습니다 . 백분율 열은 참조 용이며 계산 된 백분율 값이 있습니다.
또한 구조를 정적으로 유지하고 싶습니다. 예를 들어, 하루 동안 매개 변수가없는 경우 출력 구조는 0 값과 동일합니다.
예를 들어, 날짜 17/03/2020
에 status SA
또는 sub_status 가있는 행 c
에 값이로 출력되는 자리 표시자가 있다고 가정하십시오 0
.
답변
바라건대 시작하기에 충분하고 앞으로 나아 가기 위해서는 R에서 나온 것처럼 보이는 예상 출력과 변수 계산 방법에 대한 추가 설명이 필요합니다.
library(tidyverse)
df <- structure(
list(ID = c("P-1", " P-1", "P-1", "P-2", "P-3", "P-4", "P-5", "P-6", "P-7",
"P-8"),
Date = c("2020-03-16 12:11:33", "2020-03-16 13:16:04",
"2020-03-16 06:13:55", "2020-03-16 10:03:43",
"2020-03-16 12:37:09", "2020-03-16 06:40:24",
"2020-03-16 09:46:45", "2020-03-16 12:07:44",
"2020-03-16 14:09:51", "2020-03-16 09:19:23"),
Status = c("SA", "SA", "SA", "RE", "RE", "RE", "RE", "XA", "XA", "XA"),
Flag = c("L", "L", "L", NA, "K", "J", NA, NA, "H", "G"),
Value = c(5929.81, 5929.81, 5929.81, NA, 6969.33, 740.08, NA, NA, 1524.8,
NA),
Flag2 = c("CL", "CL", "CL", NA, "RY", "", NA, NA, "", NA),
Flag3 = c(NA, NA, NA, NA, "RI", "PO", NA, "SS", "DDP", NA)),
.Names=c("ID", "Date", "Status", "Flag", "Value", "Flag2", "Flag3"),
row.names=c(NA, 10L), class="data.frame")
df2 <- df %>%
mutate(
# add variables
Value = ifelse(0 <= Value & Value <= 15000, "0-15000", "15000-50000"),
substatus = case_when(
!is.na(Flag2) & is.na(Flag3) ~ "a",
!is.na(Flag3) & is.na(Flag2) ~ "b",
!is.na(Flag3) & !is.na(Flag2) ~ "c",
TRUE ~ "d"),
# make Date an actual date rather than a timestamp
Date = as.Date(Date),
# remove obsolete columns
Flag2 = NULL,
Flag3 = NULL,
ID = NULL,
# renames NAs into the name of the desired column
Flag = ifelse(is.na(Flag), "[Null]", Flag),
# create column of 1 for pivot
temp = 1,
# and row id
id = row_number()
) %>%
# create new columns L K etc, this also drops the Flag col
pivot_wider(names_from = "Flag", values_from = "temp", values_fill = list(temp=0)) %>%
# move `[Null]` column to the end
select(everything(), -`[Null]`, `[Null]`) %>%
mutate(
id = NULL,
count = 1,
Total = rowSums(select(., L:`[Null]`)))
df2
#> # A tibble: 10 x 12
#> Date Status Value substatus L K J H G `[Null]`
#> <date> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2020-03-16 SA 0-15~ a 1 0 0 0 0 0
#> 2 2020-03-16 SA 0-15~ a 1 0 0 0 0 0
#> 3 2020-03-16 SA 0-15~ a 1 0 0 0 0 0
#> 4 2020-03-16 RE <NA> d 0 0 0 0 0 1
#> 5 2020-03-16 RE 0-15~ c 0 1 0 0 0 0
#> 6 2020-03-16 RE 0-15~ c 0 0 1 0 0 0
#> 7 2020-03-16 RE <NA> d 0 0 0 0 0 1
#> 8 2020-03-16 XA <NA> b 0 0 0 0 0 1
#> 9 2020-03-16 XA 0-15~ c 0 0 0 1 0 0
#> 10 2020-03-16 XA <NA> d 0 0 0 0 1 0
#> # ... with 2 more variables: count <dbl>, Total <dbl>
# As you didn't tell what to do with NA values so I left them as NA
bind_rows(
df2 %>%
# add missing combinations of abcd
complete(nesting(Date, Status, Value), substatus) %>%
group_by(Date, Value, Status, substatus) %>%
summarize_all(~sum(., na.rm=TRUE)) %>%
group_by(Status, Value) %>%
mutate(percent = paste(round(100 * Total / sum(Total), 2), "%")) %>%
ungroup(),
df2 %>%
mutate(substatus = Status, Status = paste0(Status, "_")) %>%
group_by(Date, Value, Status, substatus) %>%
mutate(count = n()) %>%
group_by(count, add = TRUE) %>%
summarize_all(~sum(., na.rm=TRUE)) %>%
group_by(Value) %>%
mutate(percent = paste(round(100 * Total / sum(Total), 2), "%"))
) %>%
arrange(Date, Value, desc(Status)) %>%
mutate(Status = NULL) %>%
rename(Status = substatus) %>%
print(n=Inf)
#> # A tibble: 25 x 12
#> Date Value Status L K J H G `[Null]` count Total
#> <date> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2020-03-16 0-15~ XA 0 0 0 1 0 0 1 1
#> 2 2020-03-16 0-15~ a 0 0 0 0 0 0 0 0
#> 3 2020-03-16 0-15~ b 0 0 0 0 0 0 0 0
#> 4 2020-03-16 0-15~ c 0 0 0 1 0 0 1 1
#> 5 2020-03-16 0-15~ d 0 0 0 0 0 0 0 0
#> 6 2020-03-16 0-15~ SA 3 0 0 0 0 0 3 3
#> 7 2020-03-16 0-15~ a 3 0 0 0 0 0 3 3
#> 8 2020-03-16 0-15~ b 0 0 0 0 0 0 0 0
#> 9 2020-03-16 0-15~ c 0 0 0 0 0 0 0 0
#> 10 2020-03-16 0-15~ d 0 0 0 0 0 0 0 0
#> 11 2020-03-16 0-15~ RE 0 1 1 0 0 0 2 2
#> 12 2020-03-16 0-15~ a 0 0 0 0 0 0 0 0
#> 13 2020-03-16 0-15~ b 0 0 0 0 0 0 0 0
#> 14 2020-03-16 0-15~ c 0 1 1 0 0 0 2 2
#> 15 2020-03-16 0-15~ d 0 0 0 0 0 0 0 0
#> 16 2020-03-16 <NA> XA 0 0 0 0 1 1 2 2
#> 17 2020-03-16 <NA> a 0 0 0 0 0 0 0 0
#> 18 2020-03-16 <NA> b 0 0 0 0 0 1 1 1
#> 19 2020-03-16 <NA> c 0 0 0 0 0 0 0 0
#> 20 2020-03-16 <NA> d 0 0 0 0 1 0 1 1
#> 21 2020-03-16 <NA> RE 0 0 0 0 0 2 2 2
#> 22 2020-03-16 <NA> a 0 0 0 0 0 0 0 0
#> 23 2020-03-16 <NA> b 0 0 0 0 0 0 0 0
#> 24 2020-03-16 <NA> c 0 0 0 0 0 0 0 0
#> 25 2020-03-16 <NA> d 0 0 0 0 0 2 2 2
#> # ... with 1 more variable: percent <chr>