인지 여부를 변수를 결정하는 더 좋은 방법이 있나요 Pandas
및 / 또는 NumPy
입니다 numeric
여부는?
나는 정의 자체가 dictionary
가진 dtypes
키와 같은 numeric
/ not
값으로한다.
답변
에서 pandas 0.20.2
당신이 할 수 있습니다 :
import pandas as pd
from pandas.api.types import is_string_dtype
from pandas.api.types import is_numeric_dtype
df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1.0, 2.0, 3.0]})
is_string_dtype(df['A'])
>>>> True
is_numeric_dtype(df['B'])
>>>> True
답변
np.issubdtype
dtype이의 하위 dtype인지 확인 하는 데 사용할 수 있습니다 np.number
. 예 :
np.issubdtype(arr.dtype, np.number) # where arr is a numpy array
np.issubdtype(df['X'].dtype, np.number) # where df['X'] is a pandas Series
이것은 numpy의 dtypes에서 작동하지만 Thomas가 지적한 것처럼 pd.Categorical과 같은 팬더 특정 유형에서는 실패합니다 . is_numeric_dtype
pandas의 categoricals 함수를 사용 하는 경우 np.issubdtype보다 나은 대안입니다.
df = pd.DataFrame({'A': [1, 2, 3], 'B': [1.0, 2.0, 3.0],
'C': [1j, 2j, 3j], 'D': ['a', 'b', 'c']})
df
Out:
A B C D
0 1 1.0 1j a
1 2 2.0 2j b
2 3 3.0 3j c
df.dtypes
Out:
A int64
B float64
C complex128
D object
dtype: object
np.issubdtype(df['A'].dtype, np.number)
Out: True
np.issubdtype(df['B'].dtype, np.number)
Out: True
np.issubdtype(df['C'].dtype, np.number)
Out: True
np.issubdtype(df['D'].dtype, np.number)
Out: False
For multiple columns you can use np.vectorize:
is_number = np.vectorize(lambda x: np.issubdtype(x, np.number))
is_number(df.dtypes)
Out: array([ True, True, True, False], dtype=bool)
And for selection, pandas now has select_dtypes
:
df.select_dtypes(include=[np.number])
Out:
A B C
0 1 1.0 1j
1 2 2.0 2j
2 3 3.0 3j
답변
Based on @jaime’s answer in the comments, you need to check .dtype.kind
for the column of interest. For example;
>>> import pandas as pd
>>> df = pd.DataFrame({'numeric': [1, 2, 3], 'not_numeric': ['A', 'B', 'C']})
>>> df['numeric'].dtype.kind in 'biufc'
>>> True
>>> df['not_numeric'].dtype.kind in 'biufc'
>>> False
NB The meaning of biufc
: b
bool, i
int (signed), u
unsigned int, f
float, c
complex. See https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.kind.html#numpy.dtype.kind
답변
Pandas has select_dtype
function. You can easily filter your columns on int64, and float64 like this:
df.select_dtypes(include=['int64','float64'])
답변
This is a pseudo-internal method to return only the numeric type data
In [27]: df = DataFrame(dict(A = np.arange(3),
B = np.random.randn(3),
C = ['foo','bar','bah'],
D = Timestamp('20130101')))
In [28]: df
Out[28]:
A B C D
0 0 -0.667672 foo 2013-01-01 00:00:00
1 1 0.811300 bar 2013-01-01 00:00:00
2 2 2.020402 bah 2013-01-01 00:00:00
In [29]: df.dtypes
Out[29]:
A int64
B float64
C object
D datetime64[ns]
dtype: object
In [30]: df._get_numeric_data()
Out[30]:
A B
0 0 -0.667672
1 1 0.811300
2 2 2.020402
답변
How about just checking type for one of the values in the column? We’ve always had something like this:
isinstance(x, (int, long, float, complex))
When I try to check the datatypes for the columns in below dataframe, I get them as ‘object’ and not a numerical type I’m expecting:
df = pd.DataFrame(columns=('time', 'test1', 'test2'))
for i in range(20):
df.loc[i] = [datetime.now() - timedelta(hours=i*1000),i*10,i*100]
df.dtypes
time datetime64[ns]
test1 object
test2 object
dtype: object
When I do the following, it seems to give me accurate result:
isinstance(df['test1'][len(df['test1'])-1], (int, long, float, complex))
returns
True
답변
You can also try:
df_dtypes = np.array(df.dtypes)
df_numericDtypes= [x.kind in 'bifc' for x in df_dtypes]
It returns a list of booleans: True
if numeric, False
if not.