python pandas에서 색인 열 이름을 어떻게 얻습니까? 예제 데이터 프레임은 다음과 같습니다.
Column 1
Index Title
Apples 1
Oranges 2
Puppies 3
Ducks 4
내가하려는 것은 데이터 프레임 인덱스 제목을 가져 오거나 설정하는 것입니다. 내가 시도한 것은 다음과 같습니다.
import pandas as pd
data = {'Column 1' : [1., 2., 3., 4.],
'Index Title' : ["Apples", "Oranges", "Puppies", "Ducks"]}
df = pd.DataFrame(data)
df.index = df["Index Title"]
del df["Index Title"]
print df
이 작업을 수행하는 방법을 아는 사람이 있습니까?
답변
name
속성을 통해 색인을 얻거나 설정할 수 있습니다.
In [7]: df.index.name
Out[7]: 'Index Title'
In [8]: df.index.name = 'foo'
In [9]: df.index.name
Out[9]: 'foo'
In [10]: df
Out[10]:
Column 1
foo
Apples 1
Oranges 2
Puppies 3
Ducks 4
답변
를 사용 rename_axis
하여 다음을 제거 할 수 있습니다 None
.
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title')
print (df)
Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
None
새로운 기능은 메소드 체인에서 잘 작동합니다.
df = df.rename_axis('foo')
print (df)
Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
매개 변수를 사용하여 열 이름을 바꿀 수도 있습니다 axis
.
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title').rename_axis('Col Name', axis=1)
print (df)
Col Name Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
Col Name
print df.rename_axis('foo').rename_axis("bar", axis="columns")
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print df.rename_axis('foo').rename_axis("bar", axis=1)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
버전 pandas 0.24.0+
에서 가능 매개 변수 index
및 columns
:
df = df.rename_axis(index='foo', columns="bar")
print (df)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
인덱스 및 열 이름을 제거하면 다음과 같이 설정됩니다 None
.
df = df.rename_axis(index=None, columns=None)
print (df)
Column 1
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
만약 MultiIndex
만 지수 :
mux = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)),
index=mux,
columns=list('ABCDEF')).rename_axis('col name', axis=1)
print (df)
col name A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
print (df.index.name)
None
print (df.columns.name)
col name
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis('baz', axis=1)
print (df2)
baz A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis(index=('foo','bar'), columns='baz')
print (df2)
baz A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
인덱스 및 열 이름을 제거하면 다음과 같이 설정됩니다 None
.
df2 = df.rename_axis(index=(None,None), columns=None)
print (df2)
A B C D E F
Apples a 6 9 9 5 4 6
Oranges b 2 6 7 4 3 5
Puppies c 6 3 6 3 5 1
Ducks d 4 9 1 3 0 5
들어 MultiIndex
인덱스와 열의에 필요한 작업입니다 .names
대신 .name
하고 목록 또는 튜플로 세트 :
mux1 = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
mux2 = pd.MultiIndex.from_product([list('ABC'),
list('XY')],
names=['col name 1','col name 2'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)), index=mux1, columns=mux2)
print (df)
col name 1 A B C
col name 2 X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
확인 / 설정 값에는 복수가 필요합니다.
print (df.index.name)
None
print (df.columns.name)
None
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name 1', 'col name 2']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name 1 A B C
col name 2 X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(('baz','bak'), axis=1)
print (df2)
baz A B C
bak X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(index=('foo','bar'), columns=('baz','bak'))
print (df2)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
인덱스 및 열 이름을 제거하면 다음과 같이 설정됩니다 None
.
df2 = df.rename_axis(index=(None,None), columns=(None,None))
print (df2)
A B C
X Y X Y X Y
Apples a 2 0 2 5 2 0
Oranges b 1 7 5 5 4 8
Puppies c 2 4 6 3 6 5
Ducks d 9 6 3 9 7 0
그리고 @Jeff 솔루션 :
df.index.names = ['foo','bar']
df.columns.names = ['baz','bak']
print (df)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 3 4 7 3 3 3
Oranges b 1 2 5 8 1 0
Puppies c 9 6 3 9 6 3
Ducks d 3 2 1 0 1 0
답변
df.index.name
트릭을해야합니다.
파이썬에는 dir
객체 속성을 쿼리 할 수 있는 기능이 있습니다. dir(df.index)
여기에 도움이되었습니다.
답변
df.index.rename('foo', inplace=True)
색인 이름을 설정하는 데 사용하십시오 .
이 API는 팬더 0.13 부터 사용할 수 있습니다 .
답변
새 행을 만들지 않고 단순히 빈 셀에 넣으려면 다음을 사용하십시오.
df.columns.name = 'foo'
그렇지 않으면 다음을 사용하십시오.
df.index.name = 'foo'
답변
df.columns.values
또한 우리에게 열 이름을 줘
답변
다중 인덱스에 대한 솔루션은 jezrael의 사이클 로프 답변 안에 있지만 새로운 답변을 게시하는 데 시간이 걸렸습니다.
df.index.names
다중 인덱스의 이름을 고정 목록으로 제공합니다.