다중 회귀를 수행하는 파이썬 라이브러리를 찾지 못하는 것 같습니다. 내가 찾은 유일한 것은 단순한 회귀 만합니다. 여러 독립 변수 (x1, x2, x3 등)에 대해 종속 변수 (y)를 되돌려 야합니다.
예를 들어이 데이터를 사용하면
print 'y x1 x2 x3 x4 x5 x6 x7'
for t in texts:
print "{:>7.1f}{:>10.2f}{:>9.2f}{:>9.2f}{:>10.2f}{:>7.2f}{:>7.2f}{:>9.2f}" /
.format(t.y,t.x1,t.x2,t.x3,t.x4,t.x5,t.x6,t.x7)
(위에 대한 출력 🙂
y x1 x2 x3 x4 x5 x6 x7
-6.0 -4.95 -5.87 -0.76 14.73 4.02 0.20 0.45
-5.0 -4.55 -4.52 -0.71 13.74 4.47 0.16 0.50
-10.0 -10.96 -11.64 -0.98 15.49 4.18 0.19 0.53
-5.0 -1.08 -3.36 0.75 24.72 4.96 0.16 0.60
-8.0 -6.52 -7.45 -0.86 16.59 4.29 0.10 0.48
-3.0 -0.81 -2.36 -0.50 22.44 4.81 0.15 0.53
-6.0 -7.01 -7.33 -0.33 13.93 4.32 0.21 0.50
-8.0 -4.46 -7.65 -0.94 11.40 4.43 0.16 0.49
-8.0 -11.54 -10.03 -1.03 18.18 4.28 0.21 0.55
선형 회귀 공식을 얻으려면 어떻게 파이썬에서 이것을 회귀합니까?
Y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + + a7x7 + c
답변
sklearn.linear_model.LinearRegression
그것을 할 것입니다 :
from sklearn import linear_model
clf = linear_model.LinearRegression()
clf.fit([[getattr(t, 'x%d' % i) for i in range(1, 8)] for t in texts],
[t.y for t in texts])
그런 다음 clf.coef_
회귀 계수를 갖습니다.
sklearn.linear_model
또한 회귀에 대해 다양한 종류의 정규화를 수행하는 유사한 인터페이스가 있습니다.
답변
여기에 내가 만든 약간의 해결 방법이 있습니다. R로 확인했는데 올바르게 작동합니다.
import numpy as np
import statsmodels.api as sm
y = [1,2,3,4,3,4,5,4,5,5,4,5,4,5,4,5,6,5,4,5,4,3,4]
x = [
[4,2,3,4,5,4,5,6,7,4,8,9,8,8,6,6,5,5,5,5,5,5,5],
[4,1,2,3,4,5,6,7,5,8,7,8,7,8,7,8,7,7,7,7,7,6,5],
[4,1,2,5,6,7,8,9,7,8,7,8,7,7,7,7,7,7,6,6,4,4,4]
]
def reg_m(y, x):
ones = np.ones(len(x[0]))
X = sm.add_constant(np.column_stack((x[0], ones)))
for ele in x[1:]:
X = sm.add_constant(np.column_stack((ele, X)))
results = sm.OLS(y, X).fit()
return results
결과:
print reg_m(y, x).summary()
산출:
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.535
Model: OLS Adj. R-squared: 0.461
Method: Least Squares F-statistic: 7.281
Date: Tue, 19 Feb 2013 Prob (F-statistic): 0.00191
Time: 21:51:28 Log-Likelihood: -26.025
No. Observations: 23 AIC: 60.05
Df Residuals: 19 BIC: 64.59
Df Model: 3
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 0.2424 0.139 1.739 0.098 -0.049 0.534
x2 0.2360 0.149 1.587 0.129 -0.075 0.547
x3 -0.0618 0.145 -0.427 0.674 -0.365 0.241
const 1.5704 0.633 2.481 0.023 0.245 2.895
==============================================================================
Omnibus: 6.904 Durbin-Watson: 1.905
Prob(Omnibus): 0.032 Jarque-Bera (JB): 4.708
Skew: -0.849 Prob(JB): 0.0950
Kurtosis: 4.426 Cond. No. 38.6
pandas
이 답변에 주어진 OLS를 실행하는 편리한 방법을 제공합니다.
답변
명확히하기 위해, 당신이 제공 한 예는 여러 선형 회귀가 아니라 다변량 선형 회귀를 참조하십시오. 차이 :
단일 스칼라 예측 변수 x와 단일 스칼라 응답 변수 y의 가장 간단한 경우를 단순 선형 회귀라고합니다. 다중 및 / 또는 벡터 값 예측 변수 (자본 X로 표시) 로의 확장은 다중 선형 회귀라고도하며 다중 변수 선형 회귀라고도합니다. 거의 모든 실제 회귀 모델에는 여러 예측 변수가 포함되며 선형 회귀에 대한 기본 설명은 종종 여러 회귀 모델로 표현됩니다. 그러나이 경우 응답 변수 y는 여전히 스칼라입니다. 다변량 선형 회귀의 다른 용어는 y가 벡터 인 경우, 즉 일반 선형 회귀와 같은 경우를 의미합니다.
한마디로 :
- 배수 선형 회귀 : 응답 y는 스칼라입니다.
- 다변량 선형 회귀 : 반응 y는 벡터입니다.
(다른 출처 .)
답변
numpy.linalg.lstsq 사용할 수 있습니다 :
import numpy as np
y = np.array([-6,-5,-10,-5,-8,-3,-6,-8,-8])
X = np.array([[-4.95,-4.55,-10.96,-1.08,-6.52,-0.81,-7.01,-4.46,-11.54],[-5.87,-4.52,-11.64,-3.36,-7.45,-2.36,-7.33,-7.65,-10.03],[-0.76,-0.71,-0.98,0.75,-0.86,-0.50,-0.33,-0.94,-1.03],[14.73,13.74,15.49,24.72,16.59,22.44,13.93,11.40,18.18],[4.02,4.47,4.18,4.96,4.29,4.81,4.32,4.43,4.28],[0.20,0.16,0.19,0.16,0.10,0.15,0.21,0.16,0.21],[0.45,0.50,0.53,0.60,0.48,0.53,0.50,0.49,0.55]])
X = X.T # transpose so input vectors are along the rows
X = np.c_[X, np.ones(X.shape[0])] # add bias term
beta_hat = np.linalg.lstsq(X,y)[0]
print beta_hat
결과:
[ -0.49104607 0.83271938 0.0860167 0.1326091 6.85681762 22.98163883 -41.08437805 -19.08085066]
다음을 사용하여 예상 출력을 볼 수 있습니다.
print np.dot(X,beta_hat)
결과:
[ -5.97751163, -5.06465759, -10.16873217, -4.96959788, -7.96356915, -3.06176313, -6.01818435, -7.90878145, -7.86720264]
답변
사용하십시오 scipy.optimize.curve_fit
. 그리고 선형 맞춤뿐만 아니라.
from scipy.optimize import curve_fit
import scipy
def fn(x, a, b, c):
return a + b*x[0] + c*x[1]
# y(x0,x1) data:
# x0=0 1 2
# ___________
# x1=0 |0 1 2
# x1=1 |1 2 3
# x1=2 |2 3 4
x = scipy.array([[0,1,2,0,1,2,0,1,2,],[0,0,0,1,1,1,2,2,2]])
y = scipy.array([0,1,2,1,2,3,2,3,4])
popt, pcov = curve_fit(fn, x, y)
print popt
답변
데이터를 팬더 데이터 프레임 ( df
)으로 변환하면
import statsmodels.formula.api as smf
lm = smf.ols(formula='y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7', data=df).fit()
print(lm.params)
절편 용어는 기본적으로 포함됩니다.
더 많은 예는 이 노트북 을 참조하십시오 .
답변
이 작업을 완료하는 가장 쉬운 방법이라고 생각합니다.
from random import random
from pandas import DataFrame
from statsmodels.api import OLS
lr = lambda : [random() for i in range(100)]
x = DataFrame({'x1': lr(), 'x2':lr(), 'x3':lr()})
x['b'] = 1
y = x.x1 + x.x2 * 2 + x.x3 * 3 + 4
print x.head()
x1 x2 x3 b
0 0.433681 0.946723 0.103422 1
1 0.400423 0.527179 0.131674 1
2 0.992441 0.900678 0.360140 1
3 0.413757 0.099319 0.825181 1
4 0.796491 0.862593 0.193554 1
print y.head()
0 6.637392
1 5.849802
2 7.874218
3 7.087938
4 7.102337
dtype: float64
model = OLS(y, x)
result = model.fit()
print result.summary()
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 5.859e+30
Date: Wed, 09 Dec 2015 Prob (F-statistic): 0.00
Time: 15:17:32 Log-Likelihood: 3224.9
No. Observations: 100 AIC: -6442.
Df Residuals: 96 BIC: -6431.
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 1.0000 8.98e-16 1.11e+15 0.000 1.000 1.000
x2 2.0000 8.28e-16 2.41e+15 0.000 2.000 2.000
x3 3.0000 8.34e-16 3.6e+15 0.000 3.000 3.000
b 4.0000 8.51e-16 4.7e+15 0.000 4.000 4.000
==============================================================================
Omnibus: 7.675 Durbin-Watson: 1.614
Prob(Omnibus): 0.022 Jarque-Bera (JB): 3.118
Skew: 0.045 Prob(JB): 0.210
Kurtosis: 2.140 Cond. No. 6.89
==============================================================================