[python] 열 값을 기준으로 Pandas에서 DataFrame 행 삭제

다음과 같은 DataFrame이 있습니다.

             daysago  line_race rating        rw    wrating
 line_date
 2007-03-31       62         11     56  1.000000  56.000000
 2007-03-10       83         11     67  1.000000  67.000000
 2007-02-10      111          9     66  1.000000  66.000000
 2007-01-13      139         10     83  0.880678  73.096278
 2006-12-23      160         10     88  0.793033  69.786942
 2006-11-09      204          9     52  0.636655  33.106077
 2006-10-22      222          8     66  0.581946  38.408408
 2006-09-29      245          9     70  0.518825  36.317752
 2006-09-16      258         11     68  0.486226  33.063381
 2006-08-30      275          8     72  0.446667  32.160051
 2006-02-11      475          5     65  0.164591  10.698423
 2006-01-13      504          0     70  0.142409   9.968634
 2006-01-02      515          0     64  0.134800   8.627219
 2005-12-06      542          0     70  0.117803   8.246238
 2005-11-29      549          0     70  0.113758   7.963072
 2005-11-22      556          0     -1  0.109852  -0.109852
 2005-11-01      577          0     -1  0.098919  -0.098919
 2005-10-20      589          0     -1  0.093168  -0.093168
 2005-09-27      612          0     -1  0.083063  -0.083063
 2005-09-07      632          0     -1  0.075171  -0.075171
 2005-06-12      719          0     69  0.048690   3.359623
 2005-05-29      733          0     -1  0.045404  -0.045404
 2005-05-02      760          0     -1  0.039679  -0.039679
 2005-04-02      790          0     -1  0.034160  -0.034160
 2005-03-13      810          0     -1  0.030915  -0.030915
 2004-11-09      934          0     -1  0.016647  -0.016647

line_race같은 행을 제거해야 합니다 0. 가장 효율적인 방법은 무엇입니까?



답변

올바르게 이해하고 있다면 다음과 같이 간단해야합니다.

df = df[df.line_race != 0]


답변

그러나 미래의 바이 df = df[df.line_race != 0]패스의 경우 None/ missing 값 을 필터링하려고 할 때 아무것도하지 않는 것을 언급 할 수 있습니다.

작동합니다 :

df = df[df.line_race != 0]

아무것도하지 않습니다 :

df = df[df.line_race != None]

작동합니다 :

df = df[df.line_race.notnull()]


답변

이를 수행하는 가장 좋은 방법은 부울 마스킹을 사용하는 것입니다.

In [56]: df
Out[56]:
     line_date  daysago  line_race  rating    raw  wrating
0   2007-03-31       62         11      56  1.000   56.000
1   2007-03-10       83         11      67  1.000   67.000
2   2007-02-10      111          9      66  1.000   66.000
3   2007-01-13      139         10      83  0.881   73.096
4   2006-12-23      160         10      88  0.793   69.787
5   2006-11-09      204          9      52  0.637   33.106
6   2006-10-22      222          8      66  0.582   38.408
7   2006-09-29      245          9      70  0.519   36.318
8   2006-09-16      258         11      68  0.486   33.063
9   2006-08-30      275          8      72  0.447   32.160
10  2006-02-11      475          5      65  0.165   10.698
11  2006-01-13      504          0      70  0.142    9.969
12  2006-01-02      515          0      64  0.135    8.627
13  2005-12-06      542          0      70  0.118    8.246
14  2005-11-29      549          0      70  0.114    7.963
15  2005-11-22      556          0      -1  0.110   -0.110
16  2005-11-01      577          0      -1  0.099   -0.099
17  2005-10-20      589          0      -1  0.093   -0.093
18  2005-09-27      612          0      -1  0.083   -0.083
19  2005-09-07      632          0      -1  0.075   -0.075
20  2005-06-12      719          0      69  0.049    3.360
21  2005-05-29      733          0      -1  0.045   -0.045
22  2005-05-02      760          0      -1  0.040   -0.040
23  2005-04-02      790          0      -1  0.034   -0.034
24  2005-03-13      810          0      -1  0.031   -0.031
25  2004-11-09      934          0      -1  0.017   -0.017

In [57]: df[df.line_race != 0]
Out[57]:
     line_date  daysago  line_race  rating    raw  wrating
0   2007-03-31       62         11      56  1.000   56.000
1   2007-03-10       83         11      67  1.000   67.000
2   2007-02-10      111          9      66  1.000   66.000
3   2007-01-13      139         10      83  0.881   73.096
4   2006-12-23      160         10      88  0.793   69.787
5   2006-11-09      204          9      52  0.637   33.106
6   2006-10-22      222          8      66  0.582   38.408
7   2006-09-29      245          9      70  0.519   36.318
8   2006-09-16      258         11      68  0.486   33.063
9   2006-08-30      275          8      72  0.447   32.160
10  2006-02-11      475          5      65  0.165   10.698

업데이트 : 이제 팬더 0.13이 나왔습니다. 또 다른 방법은 df.query('line_race != 0')입니다.


답변

다른 솔루션을 추가하기 위해, 특히 새로운 팬더 평가자를 사용하는 경우에 유용합니다. 다른 솔루션은 원래 팬더를 대체하고 평가자를 잃을 것입니다

df.drop(df.loc[df['line_race']==0].index, inplace=True)


답변

여러 열 값을 기준으로 행을 삭제하려면 다음을 사용할 수 있습니다.

df[(df.line_race != 0) & (df.line_race != 10)]

의 값이 0 및 10 인 모든 행을 삭제합니다 line_race.


답변

그럼에도 불구하고 주어진 대답은 위의 누군가 df.query('line_race != 0')가 문제에 따라 훨씬 빠른 것을 사용할 수 있다고 말했듯이 정확 합니다. 매우 추천하는.


답변

이전 답변은 내가하려고하는 것과 거의 비슷하지만 색인 방법을 사용하려면 다른 색인 방법 .loc ()을 사용할 필요가 없습니다. 그것은 비슷하지만 정확한 방식으로 수행 할 수 있습니다

df.drop(df.index[df['line_race'] == 0], inplace = True)