일부 셀에 여러 값 목록이 포함 된 데이터 프레임이 있습니다. 셀에 여러 값을 저장하는 대신 목록의 각 항목이 다른 모든 열에서 동일한 값을 가진 자체 행을 갖도록 데이터 프레임을 확장하고 싶습니다. 그래서 내가 가지고 있다면 :
import pandas as pd
import numpy as np
df = pd.DataFrame(
{'trial_num': [1, 2, 3, 1, 2, 3],
'subject': [1, 1, 1, 2, 2, 2],
'samples': [list(np.random.randn(3).round(2)) for i in range(6)]
}
)
df
Out[10]:
samples subject trial_num
0 [0.57, -0.83, 1.44] 1 1
1 [-0.01, 1.13, 0.36] 1 2
2 [1.18, -1.46, -0.94] 1 3
3 [-0.08, -4.22, -2.05] 2 1
4 [0.72, 0.79, 0.53] 2 2
5 [0.4, -0.32, -0.13] 2 3
긴 형식으로 변환하는 방법 (예 :
subject trial_num sample sample_num
0 1 1 0.57 0
1 1 1 -0.83 1
2 1 1 1.44 2
3 1 2 -0.01 0
4 1 2 1.13 1
5 1 2 0.36 2
6 1 3 1.18 0
# etc.
인덱스는 중요하지 않으므로 기존 열을 인덱스로 설정해도되며 최종 순서는 중요하지 않습니다.
답변
lst_col = 'samples'
r = pd.DataFrame({
col:np.repeat(df[col].values, df[lst_col].str.len())
for col in df.columns.drop(lst_col)}
).assign(**{lst_col:np.concatenate(df[lst_col].values)})[df.columns]
결과:
In [103]: r
Out[103]:
samples subject trial_num
0 0.10 1 1
1 -0.20 1 1
2 0.05 1 1
3 0.25 1 2
4 1.32 1 2
5 -0.17 1 2
6 0.64 1 3
7 -0.22 1 3
8 -0.71 1 3
9 -0.03 2 1
10 -0.65 2 1
11 0.76 2 1
12 1.77 2 2
13 0.89 2 2
14 0.65 2 2
15 -0.98 2 3
16 0.65 2 3
17 -0.30 2 3
업데이트 : 일부 설명 : IMO이 코드를 이해하는 가장 쉬운 방법은 단계별로 실행하는 것입니다.
다음 줄에서 한 열에 값을 반복합니다. N
여기서 N
-는 해당 목록의 길이입니다.
In [10]: np.repeat(df['trial_num'].values, df[lst_col].str.len())
Out[10]: array([1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3], dtype=int64)
스칼라 값을 포함하는 모든 열에 대해 일반화 할 수 있습니다.
In [11]: pd.DataFrame({
...: col:np.repeat(df[col].values, df[lst_col].str.len())
...: for col in df.columns.drop(lst_col)}
...: )
Out[11]:
trial_num subject
0 1 1
1 1 1
2 1 1
3 2 1
4 2 1
5 2 1
6 3 1
.. ... ...
11 1 2
12 2 2
13 2 2
14 2 2
15 3 2
16 3 2
17 3 2
[18 rows x 2 columns]
를 사용하여 열 ( ) np.concatenate()
의 모든 값을 평평하게 하고 1D 벡터를 얻을 수 있습니다.list
samples
In [12]: np.concatenate(df[lst_col].values)
Out[12]: array([-1.04, -0.58, -1.32, 0.82, -0.59, -0.34, 0.25, 2.09, 0.12, 0.83, -0.88, 0.68, 0.55, -0.56, 0.65, -0.04, 0.36, -0.31])
이 모든 것을 하나로 모으기 :
In [13]: pd.DataFrame({
...: col:np.repeat(df[col].values, df[lst_col].str.len())
...: for col in df.columns.drop(lst_col)}
...: ).assign(**{lst_col:np.concatenate(df[lst_col].values)})
Out[13]:
trial_num subject samples
0 1 1 -1.04
1 1 1 -0.58
2 1 1 -1.32
3 2 1 0.82
4 2 1 -0.59
5 2 1 -0.34
6 3 1 0.25
.. ... ... ...
11 1 2 0.68
12 2 2 0.55
13 2 2 -0.56
14 2 2 0.65
15 3 2 -0.04
16 3 2 0.36
17 3 2 -0.31
[18 rows x 3 columns]
를 사용 pd.DataFrame()[df.columns]
하면 원래 순서대로 열을 선택할 수 있습니다.
답변
예상보다 조금 길다 :
>>> df
samples subject trial_num
0 [-0.07, -2.9, -2.44] 1 1
1 [-1.52, -0.35, 0.1] 1 2
2 [-0.17, 0.57, -0.65] 1 3
3 [-0.82, -1.06, 0.47] 2 1
4 [0.79, 1.35, -0.09] 2 2
5 [1.17, 1.14, -1.79] 2 3
>>>
>>> s = df.apply(lambda x: pd.Series(x['samples']),axis=1).stack().reset_index(level=1, drop=True)
>>> s.name = 'sample'
>>>
>>> df.drop('samples', axis=1).join(s)
subject trial_num sample
0 1 1 -0.07
0 1 1 -2.90
0 1 1 -2.44
1 1 2 -1.52
1 1 2 -0.35
1 1 2 0.10
2 1 3 -0.17
2 1 3 0.57
2 1 3 -0.65
3 2 1 -0.82
3 2 1 -1.06
3 2 1 0.47
4 2 2 0.79
4 2 2 1.35
4 2 2 -0.09
5 2 3 1.17
5 2 3 1.14
5 2 3 -1.79
순차 색인을 원하는 경우 reset_index(drop=True)
결과에 적용 할 수 있습니다.
업데이트 :
>>> res = df.set_index(['subject', 'trial_num'])['samples'].apply(pd.Series).stack()
>>> res = res.reset_index()
>>> res.columns = ['subject','trial_num','sample_num','sample']
>>> res
subject trial_num sample_num sample
0 1 1 0 1.89
1 1 1 1 -2.92
2 1 1 2 0.34
3 1 2 0 0.85
4 1 2 1 0.24
5 1 2 2 0.72
6 1 3 0 -0.96
7 1 3 1 -2.72
8 1 3 2 -0.11
9 2 1 0 -1.33
10 2 1 1 3.13
11 2 1 2 -0.65
12 2 2 0 0.10
13 2 2 1 0.65
14 2 2 2 0.15
15 2 3 0 0.64
16 2 3 1 -0.10
17 2 3 2 -0.76
답변
팬더> = 0.25
Series 및 DataFrame 메서드는 .explode()
목록을 별도의 행으로 분해하는 메서드를 정의합니다 . 목록 같은 열 분해 에 대한 문서 섹션을 참조하십시오 .
df = pd.DataFrame({
'var1': [['a', 'b', 'c'], ['d', 'e',], [], np.nan],
'var2': [1, 2, 3, 4]
})
df
var1 var2
0 [a, b, c] 1
1 [d, e] 2
2 [] 3
3 NaN 4
df.explode('var1')
var1 var2
0 a 1
0 b 1
0 c 1
1 d 2
1 e 2
2 NaN 3 # empty list converted to NaN
3 NaN 4 # NaN entry preserved as-is
# to reset the index to be monotonically increasing...
df.explode('var1').reset_index(drop=True)
var1 var2
0 a 1
1 b 1
2 c 1
3 d 2
4 e 2
5 NaN 3
6 NaN 4
이것은 또한리스트와 스칼라의 혼합 열과 빈리스트와 NaN을 적절히 처리합니다 (이것은 repeat
기반 솔루션 의 단점입니다 ).
그러나 지금 explode
은 단일 열에서만 작동합니다 .
추신 : 문자열 열을 분해 하려면 먼저 구분 기호를 분할 한 다음을 사용해야 explode
합니다. 이 (매우) 관련 답변을 참조하십시오.
답변
당신은 또한 사용할 수 있습니다 pd.concat
및 pd.melt
이에 대한 :
>>> objs = [df, pd.DataFrame(df['samples'].tolist())]
>>> pd.concat(objs, axis=1).drop('samples', axis=1)
subject trial_num 0 1 2
0 1 1 -0.49 -1.00 0.44
1 1 2 -0.28 1.48 2.01
2 1 3 -0.52 -1.84 0.02
3 2 1 1.23 -1.36 -1.06
4 2 2 0.54 0.18 0.51
5 2 3 -2.18 -0.13 -1.35
>>> pd.melt(_, var_name='sample_num', value_name='sample',
... value_vars=[0, 1, 2], id_vars=['subject', 'trial_num'])
subject trial_num sample_num sample
0 1 1 0 -0.49
1 1 2 0 -0.28
2 1 3 0 -0.52
3 2 1 0 1.23
4 2 2 0 0.54
5 2 3 0 -2.18
6 1 1 1 -1.00
7 1 2 1 1.48
8 1 3 1 -1.84
9 2 1 1 -1.36
10 2 2 1 0.18
11 2 3 1 -0.13
12 1 1 2 0.44
13 1 2 2 2.01
14 1 3 2 0.02
15 2 1 2 -1.06
16 2 2 2 0.51
17 2 3 2 -1.35
마지막으로 필요한 경우 처음 세 열을 기준으로 정렬 할 수 있습니다.
답변
Roman Pekar의 솔루션을 단계별로 통해 더 잘 이해하려고 노력 melt
하면서 혼란스러운 스택 및 인덱스 재설정을 피하는 데 사용되는 자체 솔루션을 찾았습니다. 나는 분명히 더 명확한 해결책이라고 말할 수 없다.
items_as_cols = df.apply(lambda x: pd.Series(x['samples']), axis=1)
# Keep original df index as a column so it's retained after melt
items_as_cols['orig_index'] = items_as_cols.index
melted_items = pd.melt(items_as_cols, id_vars='orig_index',
var_name='sample_num', value_name='sample')
melted_items.set_index('orig_index', inplace=True)
df.merge(melted_items, left_index=True, right_index=True)
출력 (분명히 원래 샘플 열을 삭제할 수 있습니다) :
samples subject trial_num sample_num sample
0 [1.84, 1.05, -0.66] 1 1 0 1.84
0 [1.84, 1.05, -0.66] 1 1 1 1.05
0 [1.84, 1.05, -0.66] 1 1 2 -0.66
1 [-0.24, -0.9, 0.65] 1 2 0 -0.24
1 [-0.24, -0.9, 0.65] 1 2 1 -0.90
1 [-0.24, -0.9, 0.65] 1 2 2 0.65
2 [1.15, -0.87, -1.1] 1 3 0 1.15
2 [1.15, -0.87, -1.1] 1 3 1 -0.87
2 [1.15, -0.87, -1.1] 1 3 2 -1.10
3 [-0.8, -0.62, -0.68] 2 1 0 -0.80
3 [-0.8, -0.62, -0.68] 2 1 1 -0.62
3 [-0.8, -0.62, -0.68] 2 1 2 -0.68
4 [0.91, -0.47, 1.43] 2 2 0 0.91
4 [0.91, -0.47, 1.43] 2 2 1 -0.47
4 [0.91, -0.47, 1.43] 2 2 2 1.43
5 [-1.14, -0.24, -0.91] 2 3 0 -1.14
5 [-1.14, -0.24, -0.91] 2 3 1 -0.24
5 [-1.14, -0.24, -0.91] 2 3 2 -0.91
답변
수동 열 명명을 피하는 Roman Pekar의 답변 버전을 찾는 사람들에게 :
column_to_explode = 'samples'
res = (df
.set_index([x for x in df.columns if x != column_to_explode])[column_to_explode]
.apply(pd.Series)
.stack()
.reset_index())
res = res.rename(columns={
res.columns[-2]:'exploded_{}_index'.format(column_to_explode),
res.columns[-1]: '{}_exploded'.format(column_to_explode)})
답변
가장 쉬운 방법은 다음과 같습니다.
samples
열을 DataFrame으로 변환- 원본 df와 결합
- 녹는
여기에 표시 :
df.samples.apply(lambda x: pd.Series(x)).join(df).\
melt(['subject','trial_num'],[0,1,2],var_name='sample')
subject trial_num sample value
0 1 1 0 -0.24
1 1 2 0 0.14
2 1 3 0 -0.67
3 2 1 0 -1.52
4 2 2 0 -0.00
5 2 3 0 -1.73
6 1 1 1 -0.70
7 1 2 1 -0.70
8 1 3 1 -0.29
9 2 1 1 -0.70
10 2 2 1 -0.72
11 2 3 1 1.30
12 1 1 2 -0.55
13 1 2 2 0.10
14 1 3 2 -0.44
15 2 1 2 0.13
16 2 2 2 -1.44
17 2 3 2 0.73
각 시도는 동일한 수의 샘플을 가지고 있기 때문에 이것이 효과가 있었을 수도 있습니다 (3). 다른 표본 크기의 시험에는 더 영리한 것이 필요할 수 있습니다.