형식화 된 인쇄 방법이 있는지 numpy.arrays
, 예를 들어 다음과 비슷한 방법이 있는지 궁금 합니다.
x = 1.23456
print '%.3f' % x
numpy.array
부동 소수점 을 인쇄하려면 종종 ‘과학적’형식으로 소수 자릿수를 인쇄하므로 저 차원 배열에서도 읽기가 어렵습니다. 그러나 numpy.array
분명히 문자열로 인쇄해야합니다 %s
. 이에 대한 해결책이 있습니까?
답변
set_printoptions
출력의 정밀도를 설정하는 데 사용할 수 있습니다 .
import numpy as np
x=np.random.random(10)
print(x)
# [ 0.07837821 0.48002108 0.41274116 0.82993414 0.77610352 0.1023732
# 0.51303098 0.4617183 0.33487207 0.71162095]
np.set_printoptions(precision=3)
print(x)
# [ 0.078 0.48 0.413 0.83 0.776 0.102 0.513 0.462 0.335 0.712]
그리고 suppress
소수에 대한 과학적 표기법의 사용을 억제합니다.
y=np.array([1.5e-10,1.5,1500])
print(y)
# [ 1.500e-10 1.500e+00 1.500e+03]
np.set_printoptions(suppress=True)
print(y)
# [ 0. 1.5 1500. ]
다른 옵션에 대해서는 set_printoptions 문서를 참조하십시오 .
NumPy 1.15.0 이상을 사용하여 인쇄 옵션을 로컬로 적용하려면 numpy.printoptions 컨텍스트 관리자를 사용할 수 있습니다 . 예를 들어 with-suite
precision=3
and 안에 suppress=True
설정되어 있습니다.
x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
print(x)
# [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
그러나 with-suite
인쇄 옵션 외부는 기본 설정으로 돌아갑니다.
print(x)
# [ 0.07334334 0.46132615 0.68935231 0.75379645 0.62424021 0.90115836
# 0.04879837 0.58207504 0.55694118 0.34768638]
이전 버전의 NumPy를 사용중인 경우 컨텍스트 관리자를 직접 작성할 수 있습니다. 예를 들어
import numpy as np
import contextlib
@contextlib.contextmanager
def printoptions(*args, **kwargs):
original = np.get_printoptions()
np.set_printoptions(*args, **kwargs)
try:
yield
finally:
np.set_printoptions(**original)
x = np.random.random(10)
with printoptions(precision=3, suppress=True):
print(x)
# [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
부동 소수점 끝에서 0이 제거되지 않도록하려면 :
np.set_printoptions
이제 formatter
각 유형에 대한 형식 함수를 지정할 수 있는 매개 변수가 있습니다.
np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print(x)
인쇄
[ 0.078 0.480 0.413 0.830 0.776 0.102 0.513 0.462 0.335 0.712]
대신에
[ 0.078 0.48 0.413 0.83 0.776 0.102 0.513 0.462 0.335 0.712]
답변
명령 에서 np.set_printoptions
기능 의 서브 세트를 가져올 수 있으며 np.array_str
이는 단일 인쇄 명령문에만 적용됩니다.
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html
예를 들면 다음과 같습니다.
In [27]: x = np.array([[1.1, 0.9, 1e-6]]*3)
In [28]: print x
[[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]]
In [29]: print np.array_str(x, precision=2)
[[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]]
In [30]: print np.array_str(x, precision=2, suppress_small=True)
[[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]]
답변
Unutbu는 정말로 완전한 대답을했지만 (나도 +1을 얻었습니다), 여기 대안 적 대안이 있습니다.
>>> x=np.random.randn(5)
>>> x
array([ 0.25276524, 2.28334499, -1.88221637, 0.69949927, 1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']
함수로서 ( format()
서식을위한 구문 사용 ) :
def ndprint(a, format_string ='{0:.2f}'):
print [format_string.format(v,i) for i,v in enumerate(a)]
용법:
>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']
>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']
>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']
배열의 색인은 형식 문자열로 액세스 할 수 있습니다.
>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']
답변
FYI Numpy 1.15 (출시일 보류 중) 에는 인쇄 옵션을 로컬로 설정하기위한 컨텍스트 관리자 가 포함됩니다 . 즉, 다음은 고유 한 컨텍스트 관리자를 작성하지 않고도 허용 된 답변 (unutbu 및 Neil G) 의 해당 예제와 동일하게 작동합니다 . 예를 들면 다음과 같습니다.
x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
print(x)
# [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
답변
문자열로 결과를 얻기가 너무 쉬운 보석 (오늘의 numpy 버전에서)은 거부 된 답변에 숨겨져 있습니다.
np.array2string
>>> import numpy as np
>>> x=np.random.random(10)
>>> np.array2string(x, formatter={'float_kind':'{0:.3f}'.format})
'[0.599 0.847 0.513 0.155 0.844 0.753 0.920 0.797 0.427 0.420]'
답변
몇 년 후, 다른 하나가 아래에 있습니다. 그러나 일상적인 사용을 위해 나는 단지
np.set_printoptions( threshold=20, edgeitems=10, linewidth=140,
formatter = dict( float = lambda x: "%.3g" % x )) # float arrays %.3g
''' printf( "... %.3g ... %.1f ...", arg, arg ... ) for numpy arrays too
Example:
printf( """ x: %.3g A: %.1f s: %s B: %s """,
x, A, "str", B )
If `x` and `A` are numbers, this is like `"format" % (x, A, "str", B)` in python.
If they're numpy arrays, each element is printed in its own format:
`x`: e.g. [ 1.23 1.23e-6 ... ] 3 digits
`A`: [ [ 1 digit after the decimal point ... ] ... ]
with the current `np.set_printoptions()`. For example, with
np.set_printoptions( threshold=100, edgeitems=3, suppress=True )
only the edges of big `x` and `A` are printed.
`B` is printed as `str(B)`, for any `B` -- a number, a list, a numpy object ...
`printf()` tries to handle too few or too many arguments sensibly,
but this is iffy and subject to change.
How it works:
numpy has a function `np.array2string( A, "%.3g" )` (simplifying a bit).
`printf()` splits the format string, and for format / arg pairs
format: % d e f g
arg: try `np.asanyarray()`
--> %s np.array2string( arg, format )
Other formats and non-ndarray args are left alone, formatted as usual.
Notes:
`printf( ... end= file= )` are passed on to the python `print()` function.
Only formats `% [optional width . precision] d e f g` are implemented,
not `%(varname)format` .
%d truncates floats, e.g. 0.9 and -0.9 to 0; %.0f rounds, 0.9 to 1 .
%g is the same as %.6g, 6 digits.
%% is a single "%" character.
The function `sprintf()` returns a long string. For example,
title = sprintf( "%s m %g n %g X %.3g",
__file__, m, n, X )
print( title )
...
pl.title( title )
Module globals:
_fmt = "%.3g" # default for extra args
_squeeze = np.squeeze # (n,1) (1,n) -> (n,) print in 1 line not n
See also:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.python.org/2.7/library/stdtypes.html#string-formatting
'''
# http://stackoverflow.com/questions/2891790/pretty-printing-of-numpy-array
#...............................................................................
from __future__ import division, print_function
import re
import numpy as np
__version__ = "2014-02-03 feb denis"
_splitformat = re.compile( r'''(
%
(?<! %% ) # not %%
-? [ \d . ]* # optional width.precision
\w
)''', re.X )
# ... %3.0f ... %g ... %-10s ...
# -> ['...' '%3.0f' '...' '%g' '...' '%-10s' '...']
# odd len, first or last may be ""
_fmt = "%.3g" # default for extra args
_squeeze = np.squeeze # (n,1) (1,n) -> (n,) print in 1 line not n
#...............................................................................
def printf( format, *args, **kwargs ):
print( sprintf( format, *args ), **kwargs ) # end= file=
printf.__doc__ = __doc__
def sprintf( format, *args ):
""" sprintf( "text %.3g text %4.1f ... %s ... ", numpy arrays or ... )
%[defg] array -> np.array2string( formatter= )
"""
args = list(args)
if not isinstance( format, basestring ):
args = [format] + args
format = ""
tf = _splitformat.split( format ) # [ text %e text %f ... ]
nfmt = len(tf) // 2
nargs = len(args)
if nargs < nfmt:
args += (nfmt - nargs) * ["?arg?"]
elif nargs > nfmt:
tf += (nargs - nfmt) * [_fmt, " "] # default _fmt
for j, arg in enumerate( args ):
fmt = tf[ 2*j + 1 ]
if arg is None \
or isinstance( arg, basestring ) \
or (hasattr( arg, "__iter__" ) and len(arg) == 0):
tf[ 2*j + 1 ] = "%s" # %f -> %s, not error
continue
args[j], isarray = _tonumpyarray(arg)
if isarray and fmt[-1] in "defgEFG":
tf[ 2*j + 1 ] = "%s"
fmtfunc = (lambda x: fmt % x)
formatter = dict( float_kind=fmtfunc, int=fmtfunc )
args[j] = np.array2string( args[j], formatter=formatter )
try:
return "".join(tf) % tuple(args)
except TypeError: # shouldn't happen
print( "error: tf %s types %s" % (tf, map( type, args )))
raise
def _tonumpyarray( a ):
""" a, isarray = _tonumpyarray( a )
-> scalar, False
np.asanyarray(a), float or int
a, False
"""
a = getattr( a, "value", a ) # cvxpy
if np.isscalar(a):
return a, False
if hasattr( a, "__iter__" ) and len(a) == 0:
return a, False
try:
# map .value ?
a = np.asanyarray( a )
except ValueError:
return a, False
if hasattr( a, "dtype" ) and a.dtype.kind in "fi": # complex ?
if callable( _squeeze ):
a = _squeeze( a ) # np.squeeze
return a, True
else:
return a, False
#...............................................................................
if __name__ == "__main__":
import sys
n = 5
seed = 0
# run this.py n= ... in sh or ipython
for arg in sys.argv[1:]:
exec( arg )
np.set_printoptions( 1, threshold=4, edgeitems=2, linewidth=80, suppress=True )
np.random.seed(seed)
A = np.random.exponential( size=(n,n) ) ** 10
x = A[0]
printf( "x: %.3g \nA: %.1f \ns: %s \nB: %s ",
x, A, "str", A )
printf( "x %%d: %d", x )
printf( "x %%.0f: %.0f", x )
printf( "x %%.1e: %.1e", x )
printf( "x %%g: %g", x )
printf( "x %%s uses np printoptions: %s", x )
printf( "x with default _fmt: ", x )
printf( "no args" )
printf( "too few args: %g %g", x )
printf( x )
printf( x, x )
printf( None )
printf( "[]:", [] )
printf( "[3]:", [3] )
printf( np.array( [] ))
printf( [[]] ) # squeeze
답변
그리고 여기 내가 사용하는 것이 있으며 꽤 복잡하지 않습니다.
print(np.vectorize("%.2f".__mod__)(sparse))