[python] matplotlib의 표면 플롯

3D 공간에서 일련의 점을 나타내는 3- 튜플 목록이 있습니다. 이 모든 점을 포함하는 표면을 플로팅하고 싶습니다.

패키지 의 plot_surface함수는 mplot3d인수 X, Y 및 Z가 2d 배열이어야합니다. plot_surface표면을 그리는 데 올바른 기능 이 있으며 데이터를 필요한 형식으로 변환하려면 어떻게해야합니까?

data = [(x1,y1,z1),(x2,y2,z2),.....,(xn,yn,zn)]



답변

표면의 경우 3- 튜플 목록과 약간 다르므로 2d 배열의 도메인에 대한 그리드를 전달해야합니다.

일부 기능이 아닌 3D 점 목록 만 f(x, y) -> z있으면 해당 3D 점 구름을 지표면으로 삼각 측량하는 여러 방법이 있기 때문에 문제가 발생합니다.

다음은 매끄러운 표면의 예입니다.

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
# Axes3D import has side effects, it enables using projection='3d' in add_subplot
import matplotlib.pyplot as plt
import random

def fun(x, y):
    return x**2 + y

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-3.0, 3.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array(fun(np.ravel(X), np.ravel(Y)))
Z = zs.reshape(X.shape)

ax.plot_surface(X, Y, Z)

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.show()

3d


답변

일부 파일에서 직접 데이터를 읽고 플롯 할 수 있습니다.

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
from sys import argv

x,y,z = np.loadtxt('your_file', unpack=True)

fig = plt.figure()
ax = Axes3D(fig)
surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.1)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.savefig('teste.pdf')
plt.show()

필요한 경우 vmin 및 vmax를 전달하여 컬러 바 범위를 정의 할 수 있습니다.

surf = ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.1, vmin=0, vmax=2000)

표면

보너스 섹션

이 경우 인공 데이터를 사용하여 대화 형 플롯을 수행하는 방법을 궁금합니다.

from __future__ import print_function
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
from IPython.display import Image

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits import mplot3d

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))

def plot(i):

    fig = plt.figure()
    ax = plt.axes(projection='3d')

    theta = 2 * np.pi * np.random.random(1000)
    r = i * np.random.random(1000)
    x = np.ravel(r * np.sin(theta))
    y = np.ravel(r * np.cos(theta))
    z = f(x, y)

    ax.plot_trisurf(x, y, z, cmap='viridis', edgecolor='none')
    fig.tight_layout()

interactive_plot = interactive(plot, i=(2, 10))
interactive_plot


답변

나는 방금이 같은 문제를 만났습니다. I 균등 대신에 2-D 어레이 (3) 1-D 어레이에 데이터 이격 한 matplotlibplot_surface욕구를. 내 데이터가 a에 있었 pandas.DataFrame으므로 여기에 3 개의 1-D 배열을 플롯하도록 수정 한 matplotlib.plot_surface예가 있습니다.

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np

X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
    linewidth=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)

ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

fig.colorbar(surf, shrink=0.5, aspect=5)
plt.title('Original Code')

그것이 원래의 예입니다. 이 다음 비트를 추가하면 3 개의 1-D 배열에서 동일한 플롯이 생성됩니다.

# ~~~~ MODIFICATION TO EXAMPLE BEGINS HERE ~~~~ #
import pandas as pd
from scipy.interpolate import griddata
# create 1D-arrays from the 2D-arrays
x = X.reshape(1600)
y = Y.reshape(1600)
z = Z.reshape(1600)
xyz = {'x': x, 'y': y, 'z': z}

# put the data into a pandas DataFrame (this is what my data looks like)
df = pd.DataFrame(xyz, index=range(len(xyz['x'])))

# re-create the 2D-arrays
x1 = np.linspace(df['x'].min(), df['x'].max(), len(df['x'].unique()))
y1 = np.linspace(df['y'].min(), df['y'].max(), len(df['y'].unique()))
x2, y2 = np.meshgrid(x1, y1)
z2 = griddata((df['x'], df['y']), df['z'], (x2, y2), method='cubic')

fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.coolwarm,
    linewidth=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)

ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

fig.colorbar(surf, shrink=0.5, aspect=5)
plt.title('Meshgrid Created from 3 1D Arrays')
# ~~~~ MODIFICATION TO EXAMPLE ENDS HERE ~~~~ #

plt.show()

결과 수치는 다음과 같습니다.

여기에 이미지 설명 입력
여기에 이미지 설명 입력


답변

임마누엘은 내가 (그리고 아마도 많은 다른 사람들이) 찾고있는 답을 얻었다. 3 개의 개별 배열에 3D 분산 데이터가있는 경우 pandas는 놀라운 도움이되며 다른 옵션보다 훨씬 더 잘 작동합니다. 자세히 설명하기 위해 x, y, z가 임의의 변수라고 가정합니다. 제 경우에는 서포트 벡터 머신을 테스트하고 있었기 때문에 c, 감마 및 오류였습니다. 데이터를 표시 할 수있는 여러 가지 잠재적 선택 사항이 있습니다.

  • scatter3D (cParams, gammas, avg_errors_array)-작동하지만 지나치게 단순합니다.
  • plot_wireframe (cParams, gammas, avg_errors_array)-작동하지만 데이터가 제대로 정렬되지 않으면 실제 과학 데이터의 대량 청크가있는 경우처럼보기 흉하게 보일 것입니다.
  • ax.plot3D (cParams, gammas, avg_errors_array)-와이어 프레임과 유사

데이터의 와이어 프레임 플롯

데이터의 와이어 프레임 플롯

데이터의 3D 분산

데이터의 3D 분산

코드는 다음과 같습니다.

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_xlabel('c parameter')
    ax.set_ylabel('gamma parameter')
    ax.set_zlabel('Error rate')
    #ax.plot_wireframe(cParams, gammas, avg_errors_array)
    #ax.plot3D(cParams, gammas, avg_errors_array)
    #ax.scatter3D(cParams, gammas, avg_errors_array, zdir='z',cmap='viridis')

    df = pd.DataFrame({'x': cParams, 'y': gammas, 'z': avg_errors_array})
    surf = ax.plot_trisurf(df.x, df.y, df.z, cmap=cm.jet, linewidth=0.1)
    fig.colorbar(surf, shrink=0.5, aspect=5)
    plt.savefig('./plots/avgErrs_vs_C_andgamma_type_%s.png'%(k))
    plt.show()

최종 출력은 다음과 같습니다.

xyz 데이터의 plot_trisurf


답변

공식 예를 확인하십시오. X, Y 및 Z는 실제로 2d 배열이며 numpy.meshgrid ()는 1d x 및 y 값에서 2d x, y 메시를 얻는 간단한 방법입니다.

http://matplotlib.sourceforge.net/mpl_examples/mplot3d/surface3d_demo.py

3 튜플을 3 1d 배열로 변환하는 비단뱀적인 방법이 있습니다.

data = [(1,2,3), (10,20,30), (11, 22, 33), (110, 220, 330)]
X,Y,Z = zip(*data)
In [7]: X
Out[7]: (1, 10, 11, 110)
In [8]: Y
Out[8]: (2, 20, 22, 220)
In [9]: Z
Out[9]: (3, 30, 33, 330)

다음은 mtaplotlib delaunay 삼각 분할 (보간)입니다. 1d x, y, z를 호환되는 것으로 변환합니다 (?) :

http://matplotlib.sourceforge.net/api/mlab_api.html#matplotlib.mlab.griddata


답변

에서 matlab에 내가 사용하는 비슷한했던 delaunay온 기능 x, y좌표 만 (안 z다음과 음모를 꾸미고,) trimesh또는 trisurf사용z 높이로 .

SciPy에는 Matlab의 QHull 라이브러리와 동일한 기본 QHull 라이브러리를 기반으로 하는 Delaunay 클래스가 있습니다.delaunay 함수 가 있으므로 동일한 결과를 얻어야합니다.

거기 에서 python-matplotlib 예제의 Plotting 3D Polygons 를 원하는대로 변환하는 코드 몇 줄이 있어야합니다 Delaunay. 각 삼각형 다각형의 사양이 제공됩니다.


답변

불규칙한 도메인 유형 문제를 가진 다른 사람들에게 도움이 될 수있는 몇 가지 추가 생각을 추가합니다. 사용자가 3 개의 벡터 / 목록 (x, y, z)이있는 경우, z가 직사각형 격자에 표면으로 그려지는 2D 솔루션을 나타내는 경우 ArtifixR의 ‘plot_trisurf ()’주석을 적용 할 수 있습니다. 유사한 예이지만 직사각형이 아닌 도메인은 다음과 같습니다.

import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

# problem parameters
nu = 50; nv = 50
u = np.linspace(0, 2*np.pi, nu,)
v = np.linspace(0, np.pi, nv,)

xx = np.zeros((nu,nv),dtype='d')
yy = np.zeros((nu,nv),dtype='d')
zz = np.zeros((nu,nv),dtype='d')

# populate x,y,z arrays
for i in range(nu):
  for j in range(nv):
    xx[i,j] = np.sin(v[j])*np.cos(u[i])
    yy[i,j] = np.sin(v[j])*np.sin(u[i])
    zz[i,j] = np.exp(-4*(xx[i,j]**2 + yy[i,j]**2)) # bell curve

# convert arrays to vectors
x = xx.flatten()
y = yy.flatten()
z = zz.flatten()

# Plot solution surface
fig = plt.figure(figsize=(6,6))
ax = Axes3D(fig)
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0,
                antialiased=False)
ax.set_title(r'trisurf example',fontsize=16, color='k')
ax.view_init(60, 35)
fig.tight_layout()
plt.show()

위의 코드는 다음을 생성합니다.

직사각형이 아닌 그리드 문제에 대한 표면도

그러나 이것은 모든 문제, 특히 문제가 불규칙한 영역에 정의 된 경우 모든 문제를 해결하지 못할 수 있습니다. 또한 도메인에 오목한 영역이 하나 이상있는 경우 delaunay 삼각 측량으로 인해 도메인 외부에 스퓨리어스 삼각형이 생성 될 수 있습니다. 이러한 경우 올바른 표면 표현을 얻으려면 이러한 불량 삼각형을 삼각 측량에서 제거해야합니다. 이러한 상황에서 사용자는 이러한 삼각형을 프로그래밍 방식으로 제거 할 수 있도록 들로네 삼각 분할 계산을 명시 적으로 포함해야 할 수 있습니다. 이러한 상황에서 다음 코드는 이전 플롯 코드를 대체 할 수 있습니다.


import matplotlib.tri as mtri
import scipy.spatial
# plot final solution
pts = np.vstack([x, y]).T
tess = scipy.spatial.Delaunay(pts) # tessilation

# Create the matplotlib Triangulation object
xx = tess.points[:, 0]
yy = tess.points[:, 1]
tri = tess.vertices # or tess.simplices depending on scipy version

#############################################################
# NOTE: If 2D domain has concave properties one has to
#       remove delaunay triangles that are exterior to the domain.
#       This operation is problem specific!
#       For simple situations create a polygon of the
#       domain from boundary nodes and identify triangles
#       in 'tri' outside the polygon. Then delete them from
#       'tri'.
#       <ADD THE CODE HERE>
#############################################################

triDat = mtri.Triangulation(x=pts[:, 0], y=pts[:, 1], triangles=tri)

# Plot solution surface
fig = plt.figure(figsize=(6,6))
ax = fig.gca(projection='3d')
ax.plot_trisurf(triDat, z, linewidth=0, edgecolor='none',
                antialiased=False, cmap=cm.jet)
ax.set_title(r'trisurf with delaunay triangulation',
          fontsize=16, color='k')
plt.show()

아래에 솔루션 1) 스퓨리어스 삼각형이있는 그림과 2) 제거 된 그림이 나와 있습니다.

여기에 이미지 설명 입력

제거 된 삼각형

위의 내용이 솔루션 데이터에서 오목한 상황을 가진 사람들에게 도움이되기를 바랍니다.